Home Universities Machine Learning with Python

Machine Learning with Python

2214
0
Online Course Highlights
  • IBM via Coursera
  • Learn for FREE, Up-gradable
  • 22 hours of effort required
  • 180,096+ already enrolled!
  • 4.7 ★★★★★ (10,178 Ratings)
  • Skill Level: Intermediate
  • Language: English

This course dives into the basics of machine learning using an approachable, and well-known programming language, Python.

In this course, we will be reviewing two main components:
First, you will be learning about the purpose of Machine Learning and where it applies to the real world. If you’re curious about the latest trends in AI and machine learning, discover top machine learning courses here.
Second, you will get a general overview of Machine Learning topics such as supervised vs unsupervised learning, model evaluation, and Machine Learning algorithms.

In this course, you practice with real-life examples of Machine learning and see how it affects society in ways you may not have guessed! If you choose to take this course and earn the Coursera course certificate, you will also earn an IBM digital badge upon successful completion of the course.

By just putting in a few hours a week for the next few weeks, this is what you’ll get.
1) New skills to add to your resume, such as regression, classification, clustering, sci-kit learn and SciPy
2) New projects that you can add to your portfolio, including cancer detection, predicting economic trends, predicting customer churn, recommendation engines, and many more.
3) And a certificate in machine learning to prove your competency, and share it anywhere you like online or offline, such as LinkedIn profiles and social media.

This course is part of multiple programs

This course can be applied to multiple Specializations or Professional Certificates programs.

Completing this course will count towards your learning in any of the following programs:

  • IBM Data Science Professional Certificate
  • IBM AI Engineering Professional Certificate

Syllabus

WEEK 1: Introduction to Machine Learning

  • 1 hour to complete

In this week, you will learn about applications of Machine Learning in different fields such as health care, banking, telecommunication, and so on. You’ll get a general overview of Machine Learning topics such as supervised vs unsupervised learning, and the usage of each algorithm. Also, you understand the advantage of using Python libraries for implementing Machine Learning models.

WEEK 2: Regression

  • 5 hours to complete

In this week, you will get a brief intro to regression. You learn about Linear, Non-linear, Simple and Multiple regression, and their applications. You apply all these methods on two different datasets, in the lab part. Also, you learn how to evaluate your regression model, and calculate its accuracy.

WEEK 3: Classification

  • 5 hours to complete

In this week, you will learn about classification technique. You practice with different classification algorithms, such as KNN, Decision Trees, Logistic Regression and SVM. Also, you learn about pros and cons of each method, and different classification accuracy metrics.

WEEK 4: Clustering

  • 4 hours to complete

In this section, you will learn about different clustering approaches. You learn how to use clustering for customer segmentation, grouping same vehicles, and also clustering of weather stations. You understand 3 main types of clustering, including Partitioned-based Clustering, Hierarchical Clustering, and Density-based Clustering.

WEEK 5: Recommender Systems

  • 3 hours to complete

In this module, you will learn about recommender systems. First, you will get introduced with main idea behind recommendation engines, then you understand two main types of recommendation engines, namely, content-based and collaborative filtering.

WEEK 6: Final Project

  • 4 hours to complete

In this module, you will do a project based of what you have learned so far. You will submit a report of your project for peer evaluation.

Take This Online Course


More Related Courses:

Data Visualization for All (Course not available)

Trinity College via edX
6 Weeks of effort required
Skill Level: Introductory
★★★★★

Data Visualization and Communication with Tableau

Duke University via Coursera
25 hours of effort required
131,528 students enrolled!
★★★★★ (2,269 Ratings)
This Course is Part of Excel to MySQL: Analytic Techniques for Business Specialization

Fundamentals of Visualization with Tableau

University of California Davis via Coursera
72 hours of effort required
42,683 students enrolled!
★★★★★ (7,177 Ratings)
This Course is Part of Data Visualization with Tableau Specialization


Your Feedback:

There are no reviews yet. Be the first one to write one.


0.0
0.0 out of 5 stars (based on 0 reviews)
Excellent0%
Very good0%
Average0%
Poor0%
Terrible0%